منابع مشابه
Compatible Families of Elliptic Type
In axiomatizing their study of Frobenius distributions [5], Lang and Trotter introduce the notion of an adelic Galois representation of elliptic type, and they ask in passing whether every such representation arises from an elliptic curve (see pp. 5 and 19 of [5]). Formulated in the language of `-adic representations [7], their question is as follows. Put G = Gal(Q/Q), let p denote a prime, and...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملCommutative Families of the Elliptic Macdonald Operator
In the paper [J. Math. Phys. 50 (2009), 095215, 42 pages], Feigin, Hashizume, Hoshino, Shiraishi, and Yanagida constructed two families of commuting operators which contain the Macdonald operator (commutative families of the Macdonald operator). They used the Ding–Iohara–Miki algebra and the trigonometric Feigin–Odesskii algebra. In the previous paper [arXiv:1301.4912], the present author const...
متن کاملConstructing Families of Pairing-Friendly Elliptic Curves
We present a general method for constructing families of elliptic curves with prescribed embedding degree and prime order. We demonstrate this method by constructing curves of embedding degree k = 10, a value which has not previously appeared in the literature, and we show that our method applies to existing constructions for k = 3, 4, 6, and 12. We give evidence that our method is unlikely to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2010
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa142-1-1